
CHAPTER 7: 

SORTING 

In this chapter we discuss the problem of sorting an array of elements. To 

simplify matters, we will assume in our examples that the array contains only 

integers, although, obviously, more complicated structures are possible. For most 

of this chapter, we will also assume that the entire sort can be done in main 

memory, so that the number of elements is relatively small (less than a million). 

Sorts that cannot be performed in main memory and must be done on disk or tape 

are also quite important. This type of sorting, known as external sorting, will 

be discussed at the end of the chapter.  

Our investigation of internal sorting will show that  

 There are several easy algorithms to sort in O(n

2

), such as insertion sort. 

 There is an algorithm, Shellsort, that is very simple to code, runs in o

(n

2

), and is efficient in practice. 
 

 There are slightly more complicated O(n log n) sorting algorithms.  

 Any general-purpose sorting algorithm requires (n log n) comparisons.  

The rest of this chapter will describe and analyze the various sorting 

algorithms. These algorithms contain interesting and important ideas for code 

optimization as well as algorithm design. Sorting is also an example where the 

analysis can be precisely performed. Be forewarned that where appropriate, we 

will do as much analysis as possible.  

7.1. Preliminaries 

The algorithms we describe will all be exchangeable. Each will be passed an array 

containing the elements and an integer containing the number of elements.  

We will assume that n, the number of elements passed to our sorting routines, has 

already been checked and is legal. For some of the sorting routines, it will be 

convenient to place a sentinel in position 0, so we will assume that the array 

ranges from 0 to n. The actual data will start at position 1 for all the sorts.  

We will also assume the existence of the "<" and ">" operators, which can be used 

to place a consistent ordering on the input. Besides the assignment operator, 

these are the only operations allowed on the input data. Sorting under these 

conditions is known as comparison-based sorting.  

7.2. Insertion Sort 
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7.2.1. The Algorithm 

One of the simplest sorting algorithms is the insertion sort. Insertion sort 

consists of n - 1 passes. For pass p = 2 through n, insertion sort ensures that 

the elements in positions 1 through p are in sorted order. Insertion sort makes 

use of the fact that elements in positions 1 through p - 1 are already known to 

be in sorted order. Figure 7.1 shows a sample file after each pass of insertion 

sort.  

Figure 7.1 shows the general strategy. In pass p, we move the pth element left 

until its correct place is found among the first p elements. The code in Figure 

7.2 implements this strategy. The sentinel in a[0] terminates the while loop in 

the event that in some pass an element is moved all the way to the front. Lines 3 

through 6 implement that data movement without the explicit use of swaps. The 

element in position p is saved in tmp, and all larger elements (prior to position 

p) are moved one spot to the right. Then tmp is placed in the correct spot. This 

is the same technique that was used in the implementation of binary heaps.  

Original        34   8  64  51  32  21     Positions Moved 

---------------------------------------------------------- 

After p = 2      8  34  64  51  32  21             1 

After p = 3      8  34  64  51  32  21             0 

After p = 4      8  34  51  64  32  21             1 

After p = 5      8  32  34  51  64  21             3 

After p = 6      8  21  32  34  51  64             4 

Figure 7.1 Insertion sort after each pass 

void 

insertion_sort( input_type a[ ], unsigned int n ) 

{ 

unsigned int j, p; 

input_type tmp; 

/*1*/       a[0] = MIN_DATA;         /* sentinel */ 

/*2*/       for( p=2; p <= n; p++ ) 

{ 

/*3*/            tmp = a[p]; 

/*4*/            for( j = p; tmp < a[j-1]; j-- ) 

/*5*/                 a[j] = a[j-1]; 
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/*6*/            a[j] = tmp; 

} 

} 

Figure 7.2 Insertion sort routine. 

7.2.2. Analysis of Insertion Sort 

Because of the nested loops, each of which can take n iterations, insertion sort 

is O(n

2

). Furthermore, this bound is tight, because input in reverse order can 

actually achieve this bound. A precise calculation shows that the test at line 4 

can be executed at most p times for each value of p. Summing over all p gives a 

total of  

  

On the other hand, if the input is presorted, the running time is O(n), because 

the test in the inner for loop always fails immediately. Indeed, if the input is 

almost sorted (this term will be more rigorously defined in the next section), 

insertion sort will run quickly. Because of this wide variation, it is worth 

analyzing the average-case behavior of this algorithm. It turns out that the 

average case is (n

2

) for insertion sort, as well as for a variety of other 

sorting algorithms, as the next section shows.  

7.3. A Lower Bound for Simple Sorting 

Algorithms 

An inversion in an array of numbers is any ordered pair (i, j) having the 

property that i < j but a[i] > a[j]. In the example of the last section, the 

input list 34, 8, 64, 51, 32, 21 had nine inversions, namely (34,8), (34,32), 

(34,21), (64,51), (64,32), (64,21), (51,32), (51,21) and (32,21). Notice that 

this is exactly the number of swaps that needed to be (implicitly) performed by 

insertion sort. This is always the case, because swapping two adjacent elements 

that are out of place removes exactly one inversion, and a sorted file has no 

inversions. Since there is O(n) other work involved in the algorithm, the running 

time of insertion sort is O(I + n), where I is the number of inversions in the 

original file. Thus, insertion sort runs in linear time if the number of 

inversions is O(n).  

We can compute precise bounds on the average running time of insertion sort by 

computing the average number of inversions in a permutation. As usual, defining 

average is a difficult proposition. We will assume that there are no duplicate 

elements (if we allow duplicates, it is not even clear what the average number of 

duplicates is). Using this assumption, we can assume that the input is some 

permutation of the first n integers (since only relative ordering is important) 
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and that all are equally likely. Under these assumptions, we have the following 

theorem:  

THEOREM 7.1.  

The average number of inversions in an array of n distinct numbers is n(n - 1)/4. 

PROOF:  

For any list, L, of numbers, consider L

r

, the list in reverse order. The reverse 

list of the example is 21, 32, 51, 64, 34, 8. Consider any pair of two numbers in 

the list (x, y), with y > x. Clearly, in exactly one of L and L

r

 this ordered 

pair represents an inversion. The total number of these pairs in a list L and its 

reverse L

r

 is n(n - 1)/2. Thus, an average list has half this amount, or n(n -

1)/4 inversions.  

This theorem implies that insertion sort is quadratic on average. It also 

provides a very strong lower bound about any algorithm that only exchanges 

adjacent elements.  

THEOREM 7.2.  

Any algorithm that sorts by exchanging adjacent elements requires (n

2

) time 

on average.  

PROOF:  

The average number of inversions is initially n(n - 1)/4 = (n

2

). Each swap 

removes only one inversion, so (n

2

) swaps are required. 

 

This is an example of a lower-bound proof. It is valid not only for insertion 

sort, which performs adjacent exchanges implicitly, but also for other simple 

algorithms such as bubble sort and selection sort, which we will not describe 

here. In fact, it is valid over an entire class of sorting algorithms, including 

those undiscovered, that perform only adjacent exchanges. Because of this, this 

proof cannot be confirmed empirically. Although this lower-bound proof is rather 

simple, in general proving lower bounds is much more complicated than proving 

upper bounds and in some cases resembles voodoo.  

This lower bound shows us that in order for a sorting algorithm to run in 

subquadratic, or o(n

2

), time, it must do comparisons and, in particular, 

exchanges between elements that are far apart. A sorting algorithm makes progress 

by eliminating inversions, and to run efficiently, it must eliminate more than 

just one inversion per exchange.  

7.4. Shellsort 

Shellsort, named after its inventor, Donald Shell, was one of the first 
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algorithms to break the quadratic time barrier, although it was not until several 

years after its initial discovery that a subquadratic time bound was proven. As 

suggested in the previous section, it works by comparing elements that are 

distant; the distance between comparisons decreases as the algorithm runs until 

the last phase, in which adjacent elements are compared. For this reason, 

Shellsort is sometimes referred to as diminishing increment sort.  

Shellsort uses a sequence, h

1

, h

2

, . . . , h

t

, called the increment sequence. Any 

increment sequence will do as long as h

1

 = 1, but obviously some choices are 

better than others (we will discuss that question later). After a phase, using 

some increment h

k

, for every i, we have a[i]  a[i+h

k

] (where this makes 

sense); all elements spaced h

k

 apart are sorted. The file is then said to be h

k

-

sorted. For example, Figure 7.3 shows an array after several phases of Shellsort. 

An important property of Shellsort (which we state without proof) is that an h

k

-

sorted file that is then h

k-1

-sorted remains h

k

-sorted. If this were not the 

case, the algorithm would likely be of little value, since work done by early 

phases would be undone by later phases.  

Original      81  94  11  93  12  35  17  95  28  58  41  75  15 

---------------------------------------------------------------- 

After 5-sort  35  17  11  28  12  41  75  15  96  58  81  94  95 

After 3-sort  28  12  11  35  15  41  58  17  94  75  81  96  95 

After 1-sort  11  12  15  17  28  35  41  58  75  81  94  95  96 

Figure 7.3 Shellsort after each pass 

The general strategy to h

k

-sort is for each position, i, in h

k

 + 1, h

k

 + 2, . . . 

, n, place the element in the correct spot among i, i - h

k

, i - 2h

k

, etc. 

Although this does not affect the implementation, a careful examination shows 

that the action of an h

k

-sort is to perform an insertion sort on h

k

 independent 

sub-arrays. This observation will be important when we analyze the running time 

of Shellsort.  

A popular (but poor) choice for increment sequence is to use the sequence 

suggested by Shell: h

t

 n/2 , and h

k

 = hk+1/2 . 

Figure 7.4 contains a 

program that implements Shellsort using this sequence. We shall see later that 

there are increment sequences that give a significant improvement in the 

algorithm's running time.  

The program in Figure 7.4 avoids the explicit use of swaps in the same manner as 

our implementation of insertion sort. Unfortunately, for Shellsort it is not 

possible to use a sentinel, and so the code in lines 3 through 7 is not quite as 

clean as the corresponding code in insertion sort (lines 3 through 5).  

void 
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shellsort( input_type a[ ], unsigned int n ) 

{ 

unsigned int i, j, increment; 

input_type tmp; 

/*1*/       for( increment = n/2; increment > 0; increment /= 2 ) 

/*2*/            for( i = increment+1; i<=n; i++ ) 

{ 

/*3*/                 tmp = a[i]; 

/*4*/                 for( j = i; j > increment; j -= increment ) 

/*5*/                      if( tmp < a[j-increment] ) 

/*6*/                           a[j] = a[j-increment]; 

else 

/*7*/                           break; 

/*8*/                 a[j] = tmp; 

} 

} 

Figure 7.4 Shellsort routine using Shell's increments (better increments are 

possible) 

7.4.1. Worst-Case Analysis of Shellsort 

Although Shellsort is simple to code, the analysis of its running time is quite 

another story. The running time of Shellsort depends on the choice of increment 

sequence, and the proofs can be rather involved. The average-case analysis of 

Shellsort is a long-standing open problem, except for the most trivial increment 

sequences. We will prove tight worst-case bounds for two particular increment 

sequences.  

THEOREM 7.3.  

The worst-case running time of Shellsort, using Shell's increments, is (n

2

). 

PROOF:  

The proof requires showing not only an upper bound on the worst-case running time 

but also showing that there exists some input that actually takes (n

2

) time 

to run. We prove the lower bound first, by constructing a bad case. First, we 
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choose n to be a power of 2. This makes all the increments even, except for the 

last increment, which is 1. Now, we will give as input an array, input_data, with 

the n/2 largest numbers in the even positions and the n/2 smallest numbers in the 

odd positions. As all the increments except the last are even, when we come to 

the last pass, the n/2 largest numbers are still all in even positions and the 

n/2 smallest numbers are still all in odd positions. The ith smallest number (i 

 n/2) is thus in position 2i -1 before the beginning of the last pass. 

Restoring the ith element to its correct place requires moving it i -1 spaces in 

the array. Thus, to merely place the n/2 smallest elements in the correct place 

requires at least  work. As an example, Figure 7.5 shows a bad 

(but not the worst) input when n = 16. The number of inversions remaining after 

the 2-sort is exactly 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28; thus, the last pass will 

take considerable time.  

To finish the proof, we show the upper bound of O(n

2

). As we have observed 

before, a pass with increment h

k

 consists of h

k

 insertion sorts of about n/h

k

 

elements. Since insertion sort is quadratic, the total cost of a pass is O(h

k

(n/h

k

)

2

) = O(n

2

/h

k

). Summing over all passes gives a total bound of 

. Because the increments form a geometric series 

with common ratio 2, and the largest term in the series is 

. Thus we obtain a total bound of O(n

2

). 

 

The problem with Shell's increments is that pairs of increments are not 

necessarily relatively prime, and thus the smaller increment can have little 

effect. Hibbard suggested a slightly different increment sequence, which gives 

better results in practice (and theoretically). His increments are of the form 1, 

3, 7, . . . , 2

k

 - 1. Although these increments are almost identical, the key 

difference is that consecutive increments have no common factors. We now analyze 

the worst-case running time of Shellsort for this increment sequence. The proof 

is rather complicated.  

    Start     1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

------------------------------------------------------------------- 

After 8-sort  1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

After 4-sort  1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

After 2-sort  1  9  2  10  3  11  4  12  5  13  6  14  7  15  8  16 

After 1-sort  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

Figure 7.5 Bad case for Shellsort with Shell's increments 

THEOREM 7.4.  
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The worst-case running time of Shellsort using Hibbard's increments is (n

3/2

).

PROOF:  

We will prove only the upper bound and leave the proof of the lower bound as an 

exercise. The proof requires some well-known results from additive number theory. 

References to these results are provided at the end of the chapter.  

For the upper bound, as before, we bound the running time of each pass and sum 

over all passes. For increments h

k

 > n

1/2

, we will use the bound O(n

2

/h

k

) from the 

previous theorem. Although this bound holds for the other increments, it is too 

large to be useful. Intuitively, we must take advantage of the fact that this 

increment sequence is special. What we need to show is that for any element a

p

in 

position p, when it is time to perform an h

k-

sort, there are only a few elements 

to the left of position p that are larger than a

p

.  

When we come to h

k

-sort the input array, we know that it has already been h

k+1

- 

and h

k+2

-sorted. Prior to the h

k

-sort, consider elements in positions p and p - 

i, i < p. If i is a multiple of h

k+1

 or h

k+2

, then clearly a[p - i] < a[p]. We can 

say more, however. If i is expressible as a linear combination (in nonnegative 

integers) of h

k+1

 and h

k+2

, then a[p - i] < a[p]. As an example, when we come to 

3-sort, the file is already 7- and 15-sorted. 52 is expressible as a linear 

combination of 7 and 15, because 52 = 1 * 7 + 3 * 15. Thus, a[100] cannot be 

larger than a[152] because a[100]  a[107]  a[122]  a[137]  a [152]. 

Now, h

k+2

 = 2h

k +1

 + 1, so h

k +1

 and h

k +2

 cannot share a common factor. In this 

case, it is possible to show that all integers that are at least as large as 

(h

k+1

 - 1)(h

k+2

 - 1) = 8h

2

k

 + 4h

k

 can be expressed as a linear combination of h

k+1

 

and h

k+2

 (see the reference at the end of the chapter).  

This tells us that the body of the for loop at line 4 can be executed at most 8h

k

+ 4 = O(h

k

) times for each of the n - h

k

 positions. This gives a bound of O(nh

k

) 

per pass.  

Using the fact that about half the increments satisfy , and assuming 

that t is even, the total running time is then  

  

Because both sums are geometric series, and since ,this simplifies 

to  

页码，8/49Structures, Algorithm Analysis: CHAPTER 7: SORTING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



  

The average-case running time of Shellsort, using Hibbard's increments, is 

thought to be O(n

5/4

), based on simulations, but nobody has been able to prove 

this. Pratt has shown that the (n

3/2

) bound applies to a wide range of 

increment sequences.  

Sedgewick has proposed several increment sequences that give an O(n

4/3

) worst-

case running time (also achievable). The average running time is conjectured to 

be O(n

7/6

) for these increment sequences. Empirical studies show that these 

sequences perform significantly better in practice than Hibbard's. The best of 

these is the sequence {1, 5, 19, 41, 109, . . .}, in which the terms are either 

of the form 9  4

i

 - 9  2

i

 + 1 or 4

i 

- 3  2

i 

+ 1. This is most easily 

implemented by placing these values in an array. This increment sequence is the 

best known in practice, although there is a lingering possibility that some 

increment sequence might exist that could give a significant improvement in the 

running time of Shellsort.  

There are several other results on Shellsort that (generally) require difficult 

theorems from number theory and combinatorics and are mainly of theoretical 

interest. Shellsort is a fine example of a very simple algorithm with an 

extremely complex analysis.  

The performance of Shellsort is quite acceptable in practice, even for n in the 

tens of thousands. The simplicity of the code makes it the algorithm of choice 

for sorting up to moderately large input.  

7.5. Heapsort 

As mentioned in Chapter 6, priority queues can be used to sort in O(n log n) 

time. The algorithm based on this idea is known as heapsort and gives the best 

Big-Oh running time we have seen so far. In practice however, it is slower than a 

version of Shellsort that uses Sedgewick's increment sequence.  

Recall, from Chapter 6, that the basic strategy is to build a binary heap of n 

elements. This stage takes O(n) time. We then perform n delete_min operations. 

The elements leave the heap smallest first, in sorted order. By recording these 

elements in a second array and then copying the array back, we sort n elements. 

Since each delete_min takes O(log n) time, the total running time is O(n log n). 

The main problem with this algorithm is that it uses an extra array. Thus, the 

memory requirement is doubled. This could be a problem in some instances. Notice 

that the extra time spent copying the second array back to the first is only O

(n), so that this is not likely to affect the running time significantly. The 

problem is space.  

A clever way to avoid using a second array makes use of the fact that after each 
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delete_min, the heap shrinks by 1. Thus the cell that was last in the heap can be 

used to store the element that was just deleted. As an example, suppose we have a 

heap with six elements. The first delete_min produces a

1

. Now the heap has only 

five elements, so we can place a

1

 in position 6. The next delete_min produces a

2

. 

Since the heap will now only have four elements, we can place a

2

 in position 5.  

Using this strategy, after the last delete_min the array will contain the 

elements in decreasing sorted order. If we want the elements in the more typical 

increasing sorted order, we can change the ordering property so that the parent 

has a larger key than the child. Thus we have a (max)heap.  

In our implementation, we will use a (max)heap, but avoid the actual ADT for 
the purposes of speed. As usual, everything is done in an array. The first step 

builds the heap in linear time. We then perform n - 1 delete_maxes by swapping 

the last element in the heap with the first, decrementing the heap size, and 

percolating down. When the algorithm terminates, the array contains the elements 

in sorted order. For instance, consider the input sequence 31, 41, 59, 26, 53, 

58, 97. The resulting heap is shown in Figure 7.6.  

Figure 7.7 shows the heap that results after the first delete_max. As the figures 

imply, the last element in the heap is 31; 97 has been placed in a part of the 

heap array that is technically no longer part of the heap. After 5 more 

delete_max operations, the heap will actually have only one element, but the 

elements left in the heap array will be in sorted order.  

The code to perform heapsort is given in Figure 7.8.  

  

Figure 7.6 (Max) heap after build_heap phase 
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Figure 7.7 Heap after first delete_max 

void 

heapsort( input_type a[], unsigned int n ) 

{ 

int i; 

/*1*/      for( i=n/2; i>0; i-- )      /* build_heap */ 

/*2*/           perc_down (a, i, n ); 

/*3*/      for( i=n; i>=2; i-- ) 

{ 

/*4*/           swap( &a[1], &a[i] );    /* delete_max */ 

/*5*/           perc_down( a, 1, i-1 ); 

} 

} 

void 

perc_down( input_type a[], unsigned int i, unsigned int n ) 

{ 

unsigned int child; 

input_type tmp; 

/*1*/      for( tmp=a[i]; i*2<=n; i=child ) 

{ 
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/*2*/           child = i*2; 

/*3*/           if( ( child != n ) && ( a[child+1] > a[child] ) ) 

/*4*/               child++; 

/*5*/           if( tmp < a[child] ) 

/*6*/                a[i] = a[child]; 

else 

/*7*/                break; 

} 

/*8*/      a[i] = tmp; 

} 

Figure 7.8 Heapsort 

7.6. Mergesort 

We now turn our attention to mergesort. Mergesort runs in O(n log n) worst-case 

running time, and the number of comparisons used is nearly optimal. It is a fine 

example of a recursive algorithm.  

The fundamental operation in this algorithm is merging two sorted lists. Because 

the lists are sorted, this can be done in one pass through the input, if the 

output is put in a third list. The basic merging algorithm takes two input arrays 

a and b, an output array c, and three counters, aptr, bptr, and cptr, which are 

initially set to the beginning of their respective arrays. The smaller of a[aptr] 

and b[bptr] is copied to the next entry in c, and the appropriate counters are 

advanced. When either input list is exhausted, the remainder of the other list is 

copied to c. An example of how the merge routine works is provided for the 

following input.  

  

If the array a contains 1, 13, 24, 26, and b contains 2, 15, 27, 38, then the 

algorithm proceeds as follows: First, a comparison is done between 1 and 2. 1 is 

added to c, and then 13 and 2 are compared.  

  

2 is added to c, and then 13 and 15 are compared.  
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13 is added to c, and then 24 and 15 are compared. This proceeds until 26 and 27 

are compared.  

  

26 is added to c, and the a array is exhausted.  

  

The remainder of the b array is then copied to c.  

  

The time to merge two sorted lists is clearly linear, because at most n - 1 

comparisons are made, where n is the total number of elements. To see this, note 

that every comparison adds an element to c, except the last comparison, which 

adds at least two.  

The mergesort algorithm is therefore easy to describe. If n = 1, there is only 

one element to sort, and the answer is at hand. Otherwise, recursively mergesort 

the first half and the second half. This gives two sorted halves, which can then 

be merged together using the merging algorithm described above. For instance, to 

sort the eight-element array 24, 13, 26, 1, 2, 27, 38, 15, we recursively sort 

the first four and last four elements, obtaining 1, 13, 24, 26, 2, 15, 27, 38. 

Then we merge the two halves as above, obtaining the final list 1, 2, 13, 15, 24, 

26, 27, 38. This algorithm is a classic divide-and-conquer strategy. The problem 

is divided into smaller problems and solved recursively. The conquering phase 

consists of patching together the answers. Divide-and-conquer is a very powerful 

use of recursion that we will see many times.  

An implementation of mergesort is provided in Figure 7.9. The procedure called 

mergesort is just a driver for the recursive routine m_sort.  

页码，13/49Structures, Algorithm Analysis: CHAPTER 7: SORTING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



The merge routine is subtle. If a temporary array is declared locally for each 

recursive call of merge, then there could be log n temporary arrays active at any 

point. This could be fatal on a machine with small memory. On the other hand, if 

the merge routine dynamically allocates and frees the minimum amount of temporary 

memory, considerable time will be used by malloc. A close examination shows that 

since merge is the last line of m_sort, there only needs to be one temporary 

array active at any point. Further, we can use any part of the temporary array; 

we will use the same portion as the input array a. This allows the improvement 

described at the end of this section. Figure 7.10 implements the merge routine.  

7.6.1. Analysis of Mergesort  

7.6.1. Analysis of Mergesort 

Mergesort is a classic example of the techniques used to analyze recursive 

routines. It is not obvious that mergesort can easily be rewritten without 

recursion (it can), so we have to write a recurrence relation for the running 

time. We will assume that n is a power of 2, so that we always split into even 

halves. For n = 1, the time to mergesort is constant, which we will denote by 1. 

Otherwise, the time to mergesort n numbers is equal to the time to do two 

recursive mergesorts of size n/2, plus the time to merge, which is linear. The 

equations below say this exactly:  

T(1) = 1 

T(n) = 2T(n/2) + n 

void 

mergesort( input_type a[], unsigned int n ) 

{ 

input_type *tmp_array; 

tmp_array = (input_type *) malloc 

( (n+1) * sizeof (input_type) ); 

if( tmp_array != NULL ) 

{ 

m_sort( a, tmp_array, 1, n ); 

free( tmp_array ); 

} 

else 

fatal_error("No space for tmp array!!!"); 

} 
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void 

m_sort( input_type a[], input_type tmp_array[ ], 

int left, int right ) 

{ 

int center; 

if( left < right ) 

{ 

center = (left + right) / 2; 

m_sort( a, tmp_array, left, center ); 

m_sort( a, tmp_array, center+1, right ); 

merge( a, tmp_array, left, center+1, right ); 

} 

} 

Figure 7.9 Mergesort routine 

This is a standard recurrence relation, which can be solved several ways. We will 

show two methods. The first idea is to divide the recurrence relation through by 

n. The reason for doing this will become apparent soon. This yields  

  

This equation is valid for any n that is a power of 2, so we may also write  

  

/* 1_pos = start of left half, r_pos = start of right half */ 

void 

merge( input_type a[ ], input_type tmp_array[ ], 

int l_pos, int r_pos, int right_end ) 

{ 

int i, left_end, num_elements, tmp_pos; 

left_end = r_pos - 1; 
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tmp_pos = l_pos; 

num_elements = right_end - l_pos + 1; 

/* main loop */ 

while( ( 1_pos <= left_end ) && ( r_pos <= right_end ) ) 

if( a[1_pos] <= a[r_pos] ) 

tmp_array[tmp_pos++] = a[l_pos++]; 

else 

tmp_array[tmp_pos++] = a[r_pos++]; 

while( l_pos <= left_end )  /* copy rest of first half */ 

tmp_array[tmp_pos++] = a[l_pos++]; 

while( r_pos <= right_end ) /* copy rest of second half */ 

tmp_array[tmp_pos++] = a[r_pos++]; 

/* copy tmp_array back */ 

for(i=1; i <= num_elements; i++, right_end-- ) 

a[right_end] = tmp_array[right_end]; 

} 

Figure 7.10 Merge routine 

and  

  

Now add up all the equations. This means that we add all of the terms on the 

left-hand side and set the result equal to the sum of all of the terms on the 

right-hand side. Observe that the term T(n/2)/(n/2) appears on both sides and 

thus cancels. In fact, virtually all the terms appear on both sides and cancel. 

This is called telescoping a sum. After everything is added, the final result is 

  

because all of the other terms cancel and there are log n equations, and so all 

the 1s at the end of these equations add up to log n. Multiplying through by n 
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gives the final answer.  

T(n) = n log n + n = O(n log n) 

Notice that if we did not divide through by n at the start of the solutions, the 

sum would not telescope. This is why it was necessary to divide through by n.  

An alternative method is to substitute the recurrence relation continually on the 

right-hand side. We have  

T(n) = 2T(n/2) + n 

Since we can substitute n/2 into the main equation,  

2T(n/2) = 2(2(T(n/4)) + n/2) = 4T(n/4) + n 

we have  

T(n) = 4T(n/4) + 2n 

Again, by substituting n/4 into the main equation, we see that  

4T(n/4) = 4(2T(n/8)) + (n/4) = 8T(n/8) + n 

So we have  

T(n) = 8T(n/8) + 3n 

Continuing in this manner, we obtain  

T(n) = 2
k

T(n/2
k

) + k  n

 

Using k = log n, we obtain  

T(n) = nT(1) + n log n = n log n + n 

The choice of which method to use is a matter of taste. The first method tends to 

produce scrap work that fits better on a standard  sheet of paper, 

leading to fewer mathematical errors, but it requires a certain amount of 

experience to apply. The second method is more of a brute force approach.  

Recall that we have assumed n = 2

k

. The analysis can be refined to handle cases 

when n is not a power of 2. The answer turns out to be almost identical (this is 

usually the case).  

Although mergesort's running time is O(n log n), it is hardly ever used for main 

memory sorts. The main problem is that merging two sorted lists requires linear 

extra memory, and the additional work spent copying to the temporary array and 

back, throughout the algorithm, has the effect of slowing down the sort 

considerably. This copying can be avoided by judiciously switching the roles of a

and tmp_array at alternate levels of the recursion. A variant of mergesort can 

also be implemented nonrecursively (Exercise 7.13), but even so, for serious 
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internal sorting applications, the algorithm of choice is quicksort, which is 

described in the next section. Nevertheless, as we will see later in this 

chapter, the merging routine is the cornerstone of most external sorting 

algorithms.  

7.7. Quicksort 

As its name implies, quicksort is the fastest known sorting algorithm in 

practice. Its average running time is O(n log n). It is very fast, mainly due to 

a very tight and highly optimized inner loop. It has O(n

2

) worst-case 

performance, but this can be made exponentially unlikely with a little effort. 

The quicksort algorithm is simple to understand and prove correct, although for 

many years it had the reputation of being an algorithm that could in theory be 

highly optimized but in practice was impossible to code correctly (no doubt 

because of FORTRAN). Like mergesort, quicksort is a divide-and-conquer 
recursive algorithm. The basic algorithm to sort an array S consists of the 

following four easy steps:  

1. If the number of elements in S is 0 or 1, then return.  

2. Pick any element v in S. This is called the pivot.  

3. Partition S - {v} (the remaining elements in S) into two disjoint groups: S

1

= 

{x  S - {v}| x  v}, and S

2

 = {x  S -{v}| x  v}. 

 

4. Return { quicksort(S

1

) followed by v followed by quicksort(S

2

)}. 

 

Since the partition step ambiguously describes what to do with elements equal to 

the pivot, this becomes a design decision. Part of a good implementation is 

handling this case as efficiently as possible. Intuitively, we would hope that 

about half the keys that are equal to the pivot go into S

1

 and the other half 

into S

2

, much as we like binary search trees to be balanced.  

Figure 7.11 shows the action of quicksort on a set of numbers. The pivot is 

chosen (by chance) to be 65. The remaining elements in the set are partitioned 

into two smaller sets. Recursively sorting the set of smaller numbers yields 0, 

13, 26, 31, 43, 57 (by rule 3 of recursion). The set of large numbers is 

similarly sorted. The sorted arrangement of the entire set is then trivially 

obtained.  

It should be clear that this algorithm works, but it is not clear why it is any 

faster than mergesort. Like mergesort, it recursively solves two subproblems and 

requires linear additional work (step 3), but, unlike mergesort, the subproblems 

are not guaranteed to be of equal size, which is potentially bad. The reason that 

quicksort is faster is that the partitioning step can actually be performed in 

place and very efficiently. This efficiency more than makes up for the lack of 

equal-sized recursive calls.  

The algorithm as described so far lacks quite a few details, which we now fill 
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in. There are many ways to implement steps 2 and 3; the method presented here is 

the result of extensive analysis and empirical study and represents a very 

efficient way to implement quicksort. Even the slightest deviations from this 

method can cause surprisingly bad results.  

7.7.1. Picking the Pivot  

7.7.2. Partitioning Strategy  

7.7.3. Small Files  

7.7.4. Actual Quicksort Routines  

7.7.5. Analysis of Quicksort  

7.7.6. A Linear-Expected-Time Algorithm for Selection  

7.7.1. Picking the Pivot 

Although the algorithm as described works no matter which element is chosen as 

pivot, some choices are obviously better than others.  
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Figure 7.11 The steps of quicksort illustrated by example 

A Wrong Way  

A Safe Maneuver  

Median-of-Three Partitioning  

A Wrong Way 

The popular, uninformed choice is to use the first element as the pivot. This is 

acceptable if the input is random, but if the input is presorted or in reverse 

order, then the pivot provides a poor partition, because virtually all the 

elements go into S

1

 or S

2

. Worse, this happens consistently throughout the 

recursive calls. The practical effect is that if the first element is used as the 

pivot and the input is presorted, then quicksort will take quadratic time to do 

essentially nothing at all, which is quite embarrassing. Moreover, presorted 

input (or input with a large presorted section) is quite frequent, so using the 

first element as pivot is an absolutely horrible idea and should be discarded 

immediately. An alternative is choosing the larger of the first two distinct keys 

as pivot, but this has the same bad properties as merely choosing the first key. 

Do not use that pivoting strategy either.  

A Safe Maneuver 

A safe course is merely to choose the pivot randomly. This strategy is generally 

perfectly safe, unless the random number generator has a flaw (which is not as 

uncommon as you might think), since it is very unlikely that a random pivot would 

consistently provide a poor partition. On the other hand, random number 

generation is generally an expensive commodity and does not reduce the average 

running time of the rest of the algorithm at all.  

Median-of-Three Partitioning 

The median of a group of n numbers is the n/2 th largest number. The best 

choice of pivot would be the median of the file. Unfortunately, this is hard to 

calculate and would slow down quicksort considerably. A good estimate can be 

obtained by picking three elements randomly and using the median of these three 

as pivot. The randomness turns out not to help much, so the common course is to 

use as pivot the median of the left, right and center elements. For instance, 

with input 8, 1, 4, 9, 6, 3, 5, 2, 7, 0 as before, the left element is 8, the 

right element is 0 and the center (in position (left + right)/2 ) element 

is 6. Thus, the pivot would be v = 6. Using median-of-three partitioning clearly 

eliminates the bad case for sorted input (the partitions become equal in this 

case) and actually reduces the running time of quicksort by about 5 percent.  

7.7.2. Partitioning Strategy 

There are several partitioning strategies used in practice, but the one described 

here is known to give good results. It is very easy, as we shall see, to do this 
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wrong or inefficiently, but it is safe to use a known method. The first step is 

to get the pivot element out of the way by swapping it with the last element. i 

starts at the first element and j starts at the next-to-last element. If the 

original input was the same as before, the following figure shows the current 

situation.  

8  1  4  9  0  3  5  2  7  6 

                        

i                       j 

For now we will assume that all the elements are distinct. Later on we will worry 

about what to do in the presence of duplicates. As a limiting case, our algorithm 

must do the proper thing if all of the elements are identical. It is surprising 

how easy it is to do the wrong thing.  

What our partitioning stage wants to do is to move all the small elements to the 

left part of the array and all the large elements to the right part. "Small" and 

"large" are, of course, relative to the pivot.  

While i is to the left of j, we move i right, skipping over elements that are 

smaller than the pivot. We move j left, skipping over elements that are larger 

than the pivot. When i and j have stopped, i is pointing at a large element and j

is pointing at a small element. If i is to the left of j, those elements are 

swapped. The effect is to push a large element to the right and a small element 

to the left. In the example above, i would not move and j would slide over one 

place. The situation is as follows.  

8  1  4  9  0  3  5  2  7  6 

                     

i                    j 

We then swap the elements pointed to by i and j and repeat the process until i 

and j cross.  

         After First Swap 

---------------------------- 

2  1  4  9  0  3  5  8  7  6 

                     

i                    j 

      Before Second Swap 

---------------------------- 
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2  1  4  9  0  3  5  8  7  6 

                  

         i        j 

      After Second Swap 

---------------------------- 

2  1  4  5  0  3  9  8  7  6 

                  

         i        j 

     Before Third Swap 

---------------------------- 

2  1  4  5  0  3  9  8  7  6 

   

j  i 

At this stage, i and j have crossed, so no swap is performed. The final part of 

the partitioning is to swap the pivot element with the element pointed to by i.  

           After Swap with Pivot 

--------------------------------------- 

2   1   4   5   0   3   6   8   7     9 

                                      

                        i           pivot 

When the pivot is swapped with i in the last step, we know that every element in 

a position p < i must be small. This is because either position p contained a 

small element to start with, or the large element originally in position p was 

replaced during a swap. A similar argument shows that elements in positions p > i

must be large.  

One important detail we must consider is how to handle keys that are equal to the 

pivot. The questions are whether or not i should stop when it sees a key equal to 

the pivot and whether or not j should stop when it sees a key equal to the pivot. 

Intuitively, i and j ought to do the same thing, since otherwise the partitioning 

step is biased. For instance, if i stops and j does not, then all keys that are 

equal to the pivot will wind up in S

2

.  
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To get an idea of what might be good, we consider the case where all the keys in 

the file are identical. If both i and j stop, there will be many swaps between 

identical elements. Although this seems useless, the positive effect is that i 

and j will cross in the middle, so when the pivot is replaced, the partition 

creates two nearly equal subfiles. The mergesort analysis tells us that the total 

running time would then be O(n log n).  

If neither i nor j stop, and code is present to prevent them from running off the 

end of the array, no swaps will be performed. Although this seems good, a correct 

implementation would then swap the pivot into the last spot that i touched, which 

would be the next-to-last position (or last, depending on the exact 

implementation). This would create very uneven subfiles. If all the keys are 

identical, the running time is O(n

2

). The effect is the same as using the first 

element as a pivot for presorted input. It takes quadratic time to do nothing!  

Thus, we find that it is better to do the unnecessary swaps and create even 

subfiles than to risk wildly uneven subfiles. Therefore, we will have both i and 

j stop if they encounter a key equal to the pivot. This turns out to be the only 

one of the four possibilities that does not take quadratic time for this input.  

At first glance it may seem that worrying about a file of identical elements is 

silly. After all, why would anyone want to sort 5,000 identical elements? 

However, recall that quicksort is recursive. Suppose there are 100,000 elements, 

of which 5,000 are identical. Eventually, quicksort will make the recursive call 

on only these 5,000 elements. Then it really will be important to make sure that 

5,000 identical elements can be sorted efficiently.  

7.7.3. Small Files 

For very small files (n  20), quicksort does not perform as well as insertion 

sort. Furthermore, because quicksort is recursive, these cases will occur 

frequently. A common solution is not to use quicksort recursively for small 

files, but instead use a sorting algorithm that is efficient for small files, 

such as insertion sort. An even better idea is to leave the file slightly 

unsorted and finish up with insertion sort. This works well, because insertion 

sort is efficient for nearly sorted files. Using this strategy can actually save 

about 15 percent in the running time (over doing no cutoff at all). A good cutoff 

range is n = 10, although any cutoff between 5 and 20 is likely to produce 

similar results. This also saves nasty degenerate cases, such as taking the 

median of three elements when there are only one or two. Of course, if there is a 

bug in the basic quicksort routine, then the insertion sort will be very, very 

slow.  

7.7.4. Actual Quicksort Routines 

The driver for quicksort is shown in Figure 7.12.  

The general form of the routines will be to pass the array and the range of the 

array (left and right) to be sorted. The first routine to deal with is pivot 

selection. The easiest way to do this is to sort a[left], a[right], and a[center] 

in place. This has the extra advantage that the smallest of the three winds up in 
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a[left], which is where the partitioning step would put it anyway. The largest 

winds up in a[right], which is also the correct place, since it is larger than 

the pivot. Therefore, we can place the pivot in a[right - 1] and initialize i and 

j to left + 1 and right - 2 in the partition phase. Yet another benefit is that 

because a[left] is smaller than the pivot, it will act as a sentinel for j. Thus, 

we do not need to worry about j running past the end. Since i will stop on keys 

equal to the pivot, storing the pivot in a[right - 1] provides a sentinel for i. 

The code in Figure 7.13 does the median-of-three partitioning with all the side 

effects described. It may seem that it is only slightly inefficient to compute 

the pivot by a method that does not actually sort a[left], a[center], and a

[right], but, surprisingly, this produces bad results (see Exercise 7.37).  

The real heart of the quicksort routine is in Figure 7.14. It includes the 

partitioning and recursive calls. There are several things worth noting in this 

implementation. Line 3 initializes i and j to 1 past their correct values, so 

that there are no special cases to consider. This initialization depends on the 

fact that median-of-three partitioning has some side effects; this program will 

not work if you try to use it without change with a simple pivoting strategy, 

because i and j start in the wrong place and there is no longer a sentinel for j. 

void 

quick_sort( input_type a[ ], unsigned int n ) 

{ 

q_sort( a, 1, n ); 

insertion_sort( a, n ); 

} 

Figure 7.12 Driver for quicksort 

/* Return median of left, center, and right. */ 

/* Order these and hide pivot */ 

input_type 

median3( input_type a[], int left, int right ) 

{ 

int center; 

center = (left + right) / 2; 

if( a[left] > a[center] ) 

swap( &a[left], &a[center] ); 

if( a[left] > a[right] ) 

swap( &a[left], &a[right] ); 
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if( a[center] > a[right] ) 

swap( &a[center], &a[right] ); 

/* invariant: a[left] <= a[center] <= a[right] */ 

swap( &a[center], &a[right-1] );     /* hide pivot */ 

return a[right-1];                   /* return pivot */ 

} 

Figure 7.13 Code to perform median-of-three partitioning 

The swap at line 8 is sometimes written explicitly, for speed purposes. For the 

algorithm to be fast, it is necessary to force the compiler to compile this code 

in-line. Many compilers will do this automatically, if asked to, but for those 

that do not the difference can be significant.  

Finally, lines 5 and 6 show why quicksort is so fast. The inner loop of the 

algorithm consists of an increment/decrement (by 1, which is fast), a test, and a 

jump. There is no extra juggling as there is in mergesort. This code is still 

surprisingly tricky. It is tempting to replace lines 3 through 9 with the 

statements in Figure 7.15. This does not work, because there would be an infinite 

loop if a[i] = a[j] = pivot.  

7.7.5. Analysis of Quicksort 

Like mergesort, quicksort is recursive, and hence, its analysis requires solving 

a recurrence formula. We will do the analysis for a quicksort, assuming a random 

pivot (no median-of-three partitioning) and no cutoff for small files. We will 

take T(0) = T(1) = 1, as in mergesort. The running time of quicksort is equal to 

the running time of the two recursive calls plus the linear time spent in the 

partition (the pivot selection takes only constant time). This gives the basic 

quicksort relation  

T(n) = T(i) + T(n - i - 1) + cn  

(7.1) 

where i = |S

1

| is the number of elements in S

1

. We will look at three cases. 

 

void 

q_sort( input_type a[], int left, int right ) 

{ 

int i, j; 

input_type pivot; 

/*1*/       if( left + CUTOFF <= right ) 
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{ 

/*2*/           pivot = median3( a, left, right ); 

/*3*/           i=left; j=right-1; 

/*4*/           for(;;) 

{ 

/*5*/                while( a[++i] < pivot ); 

/*6*/                while( a[--j] > pivot ); 

/*7*/                if( i < j ) 

/*8*/                     swap( &a[i], &a[j] ); 

else 

/*9*/                     break; 

} 

/*10*/          swap( &a[i], &a[right-1] );   /*restore pivot*/ 

/*11*/          q_sort( a, left, i-1 ); 

/*12*/          q_sort( a, i+1, right ); 

} 

} 

Figure 7.14 Main quicksort routine 

/*3*/           i=left+1; j=right-2; 

/*4*/           for(;;) 

{ 

/*5*/                while( a[i] < pivot ) i++; 

/*6*/                while( a[j] > pivot ) j--; 

/*7*/                if( i < j ) 

/*8*/                     swap( &a[i], &a[j] ); 

else 

/*9*/                     break; 

} 
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Figure 7.15 A small change to quicksort, which breaks the algorithm 

Worst-Case Analysis  

Best-Case Analysis  

Average-Case Analysis  

Worst-Case Analysis 

The pivot is the smallest element, all the time. Then i = 0 and if we ignore T(0) 

= 1, which is insignificant, the recurrence is  

T(n) = T(n - 1) + cn, n > 1  

(7.2) 

We telescope, using Equation (7.2) repeatedly. Thus  

T(n -1) = T(n - 2) + c(n - 1)  

(7.3) 

T(n - 2) = T(n - 3) + c(n - 2)  

(7.4) 

...  

T(2) = T(1) + c(2)  

(7.5) 

Adding up all these equations yields  

  

(7.6) 

as claimed earlier.  

Best-Case Analysis 

In the best case, the pivot is in the middle. To simplify the math, we assume 

that the two subfiles are each exactly half the size of the original, and 

although this gives a slight overestimate, this is acceptable because we are only 

interested in a Big-Oh answer.  

T(n) = 2T(n/2) + cn  
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(7.7) 

Divide both sides of Equation (7.7) by n.  

  

(7.8) 

We will telescope using this equation.  

  

(7.9) 

  

(7.10) 

  

(7.11) 

We add all the equations from (7.7) to (7.11) and note that there are log n of 

them:  

  

(7.12) 

which yields  

T(n) = cn log n + n = O(n log n)  

(7.13) 

Notice that this is the exact same analysis as mergesort, hence we get the same 

answer.  

Average-Case Analysis 

This is the most difficult part. For the average case, we assume that each of the 

file sizes for S

1

 is equally likely, and hence has probability 1/n. This 
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assumption is actually valid for our pivoting and partitioning strategy, but it 

is not valid for some others. Partitioning strategies that do not preserve the 

randomness of the subfiles cannot use this analysis. Interestingly, these 

strategies seem to result in programs that take longer to run in practice.  

With this assumption, the average value of T(i), and hence T(n - i -1), is 

. Equation (7.1) then becomes  

  

(7.14) 

If Equation (7.14) is multiplied by n, it becomes  

  

(7.15) 

We need to remove the summation sign to simplify matters. We note that we can 

telescope with one more equation.  

  

(7.16) 

If we subtract (7.16) from (7.15), we obtain  

nT(n) - (n -1)T(n -1) = 2T(n -1) + 2cn -c  

(7.17) 

We rearrange terms and drop the insignificant -c on the right, obtaining  

nT(n) = (n + 1)T(n -1) + 2cn  

(7.18) 

We now have a formula for T(n) in terms of T(n -1) only. Again the idea is to 

telescope, but Equation (7.18) is in the wrong form. Divide (7.18) by n(n + 1):  

  

(7.19) 
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Now we can telescope.  

  

(7.20) 

  

(7.21) 

  

(7.22) 

Adding equations (7.19) through (7.22) yields  

  

(7.23) 

The sum is about log

e

, where   0.577 is known as Euler's 

constant, so  

  

(7.24) 

  

(7.25) 

Although this analysis seems complicated, it really is not--the steps are natural 

once you have seen some recurrence relations. The analysis can actually be taken 

further. The highly optimized version that was described above has also been 

analyzed, and this result gets extremely difficult, involving complicated 

recurrences and advanced mathematics. The effects of equal keys has also been 

analyzed in detail, and it turns out that the code presented does the right 

thing.  
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7.7.6. A Linear-Expected-Time Algorithm for Selection 

Quicksort can be modified to solve the selection problem, which we have seen in 

chapters 1 and 6. Recall that by using a priority queue, we can find the kth 

largest (or smallest) element in O(n + k log n). For the special case of finding 

the median, this gives an O(n log n) algorithm.  

Since we can sort the file in O(n log n) time, one might expect to obtain a 

better time bound for selection. The algorithm we present to find the kth 

smallest element in a set S is almost identical to quicksort. In fact, the first 

three steps are the same. We will call this algorithm quickselect. Let |S

i

| 

denote the number of elements in S

i

. The steps of quickselect are  

1. If |S| = 1, then k = 1 and return the elements in S as the answer. If a cutoff 

for small files is being used and |S|  CUTOFF, then sort S and return the kth 

smallest element.  

2. Pick a pivot element, v  S.  

3. Partition S - {v} into S

1

 and S

2

, as was done with quicksort. 

 

4. If k  |S

1

|, then the kth smallest element must be in S

1

. In this case, 

return quickselect (S

1

, k). If k = 1 + |S

1

|, then the pivot is the kth smallest 

element and we can return it as the answer. Otherwise, the kth smallest element 

lies in S

2

, and it is the (k - |S

1

| - 1)st smallest element in S

2

. We make a 

recursive call and return quickselect (S

2

, k - |S

1

| - 1).  

In contrast to quicksort, quickselect makes only one recursive call instead of 

two. The worst case of quickselect is identical to that of quicksort and is O

(n

2

). Intuitively, this is because quicksort's worst case is when one of S

1

 and 

S

2

 is empty; thus, quickselect is not really saving a recursive call. The average 

running time, however, is O(n). The analysis is similar to quicksort's and is 

left as an exercise.  

The implementation of quickselect is even simpler than the abstract description 

might imply. The code to do this shown in Figure 7.16. When the algorithm 

terminates, the kth smallest element is in position k. This destroys the original 

ordering; if this is not desirable, then a copy must be made.  

/* q_select places the kth smallest element in a[k]*/ 

void 

q_select( input_type a[], int k, int left, int right ) 

{ 
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int i, j; 

input_type pivot; 

/*1*/       if( left + CUTOFF <= right ) 

{ 

/*2*/            pivot = median3( a, left, right ); 

/*3*/            i=left; j=right-1; 

/*4*/            for(;;) 

{ 

/*5*/                 while( a[++i] < pivot ); 

/*6*/                 while( a[--j] > pivot ); 

/*7*/                 if (i < j ) 

/*8*/                      swap( &a[i], &a[j] ); 

else 

/*9*/                     break; 

} 

/*10*/           swap( &a[i], &a[right-1] ); /* restore pivot */ 

/*11*/           if( k < i) 

/*12*/                q_select( a, k, left, i-1 ); 

else 

/*13*/            if( k > i ) 

/*14*/                 q-select( a, k, i+1, right ); 

} 

else 

/*15*/            insert_sort(a, left, right ); 

} 

Figure 7.16 Main quickselect routine 

Using a median-of-three pivoting strategy makes the chance of the worst case 

occuring almost negligible. By carefully choosing the pivot, however, we can 

eliminate the quadratic worst case and ensure an O(n) algorithm. The overhead 

involved in doing this is considerable, so the resulting algorithm is mostly of 
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theoretical interest. In Chapter 10, we will examine the linear-time worst-case 

algorithm for selection, and we shall also see an interesting technique of 

choosing the pivot that results in a somewhat faster selection algorithm in 

practice.  

7.8. Sorting Large Structures 

Throughout our discussion of sorting, we have assumed that the elements to be 

sorted are simply integers. Frequently, we need to sort large structures by a 

certain key. For instance, we might have payroll records, with each record 

consisting of a name, address, phone number, financial information such as 

salary, and tax information. We might want to sort this information by one 

particular field, such as the name. For all of our algorithms, the fundamental 

operation is the swap, but here swapping two structures can be a very expensive 

operation, because the structures are potentially large. If this is the case, a 

practical solution is to have the input array contain pointers to the structures. 

We sort by comparing the keys the pointers point to, swapping pointers when 

necessary. This means that all the data movement is essentially the same as if we 

were sorting integers. This is known as indirect sorting; we can use this 

technique for most of the data structures we have described. This justifies our 

assumption that complex structures can be handled without tremendous loss 

efficiency.  

7.9. A General Lower Bound for Sorting 

Although we have O(n log n) algorithms for sorting, it is not clear that this is 

as good as we can do. In this section, we prove that any algorithm for sorting 

that uses only comparisons requires (n log n) comparisons (and hence time) in 

the worst case, so that mergesort and heapsort are optimal to within a constant 

factor. The proof can be extended to show that (n log n) comparisons are 

required, even on average, for any sorting algorithm that uses only comparisons, 

which means that quicksort is optimal on average to within a constant factor.  

Specifically, we will prove the following result: Any sorting algorithm that uses 

only comparisons requires log n!  comparisons in the worst case and log n! 

comparisons on average. We will assume that all n elements are distinct, since 

any sorting algorithm must work for this case.  

7.9.1 Decision Trees  

7.9.1 Decision Trees 

A decision tree is an abstraction used to prove lower bounds. In our context, a 

decision tree is a binary tree. Each node represents a set of possible orderings, 

consistent with comparisons that have been made, among the elements. The results 

of the comparisons are the tree edges.  
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Figure 7.17 A decision tree for three-element insertion sort 

The decision tree in Figure 7.17 represents an algorithm that sorts the three 

elements a, b, and c. The initial state of the algorithm is at the root. (We will 

use the terms state and node interchangeably.) No comparisons have been done, so 

all orderings are legal. The first comparison that this particular algorithm 

performs compares a and b. The two results lead to two possible states. If a < b, 

then only three possibilities remain. If the algorithm reaches node 2, then it 

will compare a and c. Other algorithms might do different things; a different 

algorithm would have a different decision tree. If a > c, the algorithm enters 

state 5. Since there is only one ordering that is consistent, the algorithm can 

terminate and report that it has completed the sort. If a < c, the algorithm 

cannot do this, because there are two possible orderings and it cannot possibly 

be sure which is correct. In this case, the algorithm will require one more 

comparison.  

Every algorithm that sorts by using only comparisons can be represented by a 

decision tree. Of course, it is only feasible to draw the tree for extremely 

small input sizes. The number of comparisons used by the sorting algorithm is 

equal to the depth of the deepest leaf. In our case, this algorithm uses three 

comparisons in the worst case. The average number of comparisons used is equal to 

the average depth of the leaves. Since a decision tree is large, it follows that 

there must be some long paths. To prove the lower bounds, all that needs to be 

shown are some basic tree properties.  

LEMMA 7.1.  

Let T be a binary tree of depth d. Then T has at most 2

d 

leaves. 

 

PROOF:  
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The proof is by induction. If d = 0, then there is at most one leaf, so the basis 

is true. Otherwise, we have a root, which cannot be a leaf, and a left and right 

subtree, each of depth at most d - 1. By the induction hypothesis, they can each 

have at most 2

d-1 

leaves, giving a total of at most 2

d 

leaves. This proves the 

lemma.  

LEMMA 7.2.  

A binary tree with L leaves must have depth at least log L .  

PROOF:  

Immediate from the preceding lemma.  

THEOREM 7.5.  

Any sorting algorithm that uses only comparisons between elements requires at 

least log n!  comparisons in the worst case.  

PROOF:  

A decision tree to sort n elements must have n! leaves. The theorem follows from 

the preceding lemma.  

THEOREM 7.6.  

Any sorting algorithm that uses only comparisons between elements requires (n 

log n) comparisons.  

PROOF:  

From the previous theorem, log n! comparisons are required.  

  

This type of lower-bound argument, when used to prove a worst-case result, is 

sometimes known as an information-theoretic lower bound. The general theorem says 

that if there are P different possible cases to distinguish, and the questions 

are of the form YES/NO, then log P  questions are always required in some 
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case by any algorithm to solve the problem. It is possible to prove a similar 

result for the average-case running time of any comparison-based sorting 

algorithm. This result is implied by the following lemma, which is left as an 

exercise: Any binary tree with L leaves has an average depth of at least log L.  

7.10. Bucket Sort 

Although we proved in the previous section that any general sorting algorithm 

that uses only comparisons requires (n log n) time in the worst case, recall 

that it is still possible to sort in linear time in some special cases.  

A simple example is bucket sort. For bucket sort to work, extra information must 

be available. The input a

1

, a

2

, . . . , a

n

must consist of only positive integers 

smaller than m. (Obviously extensions to this are possible.) If this is the case, 

then the algorithm is simple: Keep an array called count, of size m, which is 

initialized to all 0s. Thus, count has m cells, or buckets, which are initially 

empty. When a

i

 is read, increment count[a

i

] by 1. After all the input is read, 

scan the count array, printing out a representation of the sorted list. This 

algorithm takes O(m + n); the proof is left as an exercise. If m is O(n), then 

the total is O(n).  

Although this algorithm seems to violate the lower bound, it turns out that it 

does not because it uses a more powerful operation than simple comparisons. By 

incrementing the appropriate bucket, the algorithm essentially performs an m-way 

comparison in unit time. This is similar to the strategy used in extendible 

hashing (Section 5.6). This is clearly not in the model for which the lower bound 

was proven.  

This algorithm does, however, question the validity of the model used in proving 

the lower bound. The model actually is a strong model, because a general-purpose 

sorting algorithm cannot make assumptions about the type of input it can expect 

to see, but must make decisions based on ordering information only. Naturally, if 

there is extra information available, we should expect to find a more efficient 

algorithm, since otherwise the extra information would be wasted.  

Although bucket sort seems like much too trivial an algorithm to be useful, it 

turns out that there are many cases where the input is only small integers, so 

that using a method like quicksort is really overkill.  

7.11. External Sorting 

So far, all the algorithms we have examined require that the input fit into main 

memory. There are, however, applications where the input is much too large to fit 

into memory. This section will discuss external sorting algorithms, which are 

designed to handle very large inputs.  

7.11.1. Why We Need New Algorithms 

Most of the internal sorting algorithms take advantage of the fact that memory is 

页码，36/49Structures, Algorithm Analysis: CHAPTER 7: SORTING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



directly addressable. Shellsort compares elements a[

i

] and a[i - h

k

] in one time 

unit. Heapsort compares elements a[i] and a[i * 2] in one time unit. Quicksort, 

with median-of-three partitioning, requires comparing a[left], a[center], and a

[right] in a constant number of time units. If the input is on a tape, then all 

these operations lose their efficiency, since elements on a tape can only be 

accessed sequentially. Even if the data is on a disk, there is still a practical 

loss of efficiency because of the delay required to spin the disk and move the 

disk head.  

To see how slow external accesses really are, create a random file that is large, 

but not too big to fit in main memory. Read the file in and sort it using an 

efficient algorithm. The time it takes to sort the input is certain to be 

insignificant compared to the time to read the input, even though sorting is an O

(n log n) operation and reading the input is only O(n).  

7.11.2. Model for External Sorting 

The wide variety of mass storage devices makes external sorting much more device-

dependent than internal sorting. The algorithms that we will consider work on 

tapes, which are probably the most restrictive storage medium. Since access to an 

element on tape is done by winding the tape to the correct location, tapes can be 

efficiently accessed only in sequential order (in either direction).  

We will assume that we have at least three tape drives to perform the sorting. We 

need two drives to do an efficient sort; the third drive simplifies matters. If 

only one tape drive is present, then we are in trouble: any algorithm will 

require (n

2

) tape accesses. 

 

7.11.3. The Simple Algorithm 

The basic external sorting algorithm uses the merge routine from mergesort. 

Suppose we have four tapes, T

a1

, T

a2

, T

b1

, T

b2

, which are two input and two output 

tapes. Depending on the point in the algorithm, the a and b tapes are either 

input tapes or output tapes. Suppose the data is initially on T

a1

. Suppose 

further that the internal memory can hold (and sort) m records at a time. A 

natural first step is to read m records at a time from the input tape, sort the 

records internally, and then write the sorted records alternately to T

b1

 and T

b2

. 

We will call each set of sorted records a run. When this is done, we rewind all 

the tapes. Suppose we have the same input as our example for Shellsort.  

  

If m = 3, then after the runs are constructed, the tapes will contain the data 

indicated in the following figure.  
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Now T

b1

 and T

b2

 contain a group of runs. We take the first run from each tape and 

merge them, writing the result, which is a run twice as long, onto T

a1

. Then we 

take the next run from each tape, merge these, and write the result to T

a2

. We 

continue this process, alternating between T

a1

 and T

a2

, until either T

b1

 or T

b2

is 

empty. At this point either both are empty or there is one run left. In the 

latter case, we copy this run to the appropriate tape. We rewind all four tapes, 

and repeat the same steps, this time using the a tapes as input and the b tapes 

as output. This will give runs of 4m. We continue the process until we get one 

run of length n.  

This algorithm will require log(n/m)  passes, plus the initial run-
constructing pass. For instance, if we have 10 million records of 128 bytes each, 

and four megabytes of internal memory, then the first pass will create 320 runs. 

We would then need nine more passes to complete the sort. Our example requires 

log 13/3  = 3 more passes, which are shown in the following figure.  

  

  

  

7.11.4. Multiway Merge 

If we have extra tapes, then we can expect to reduce the number of passes 

required to sort our input. We do this by extending the basic (two-way) merge to 

a k-way merge.  

Merging two runs is done by winding each input tape to the beginning of each run. 

Then the smaller element is found, placed on an output tape, and the appropriate 
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input tape is advanced. If there are k input tapes, this strategy works the same 

way, the only difference being that it is slightly more complicated to find the 

smallest of the k elements. We can find the smallest of these elements by using a 

priority queue. To obtain the next element to write on the output tape, we 

perform a delete_min operation. The appropriate input tape is advanced, and if 

the run on the input tape is not yet completed, we insert the new element into 

the priority queue. Using the same example as before, we distribute the input 

onto the three tapes.  

  

We then need two more passes of three-way merging to complete the sort.  

  

  

After the initial run construction phase, the number of passes required using k-

way merging is log

k

(n/m) , because the runs get k times as large in each 

pass. For the example above, the formula is verified, since log

3

 13/3  = 2. 

If we have 10 tapes, then k = 5, and our large example from the previous section 

would require log

5

 320  = 4 passes. 
 

7.11.5. Polyphase Merge 

The k-way merging strategy developed in the last section requires the use of 2k 

tapes. This could be prohibitive for some applications. It is possible to get by 

with only k + 1 tapes. As an example, we will show how to perform two-way merging 

using only three tapes.  
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Suppose we have three tapes, T

1

, T2, and T3, and an input file on T1 that will 

produce 34 runs. One option is to put 17 runs on each of T

2 

and T

3

. We could then 

merge this result onto T

1

, obtaining one tape with 17 runs. The problem is that 

since all the runs are on one tape, we must now put some of these runs on T

2 

to 

perform another merge. The logical way to do this is to copy the first eight runs 

from T

1 

onto T

2 

and then perform the merge. This has the effect of adding an 

extra half pass for every pass we do.  

An alternative method is to split the original 34 runs unevenly. Suppose we put 

21 runs on T

2 

and 13 runs on T

3

. We would then merge 13 runs onto T

1 

before T

3 

was 

empty. At this point, we could rewind T

1 

and T

3

, and merge T

1

, with 13 runs, and 

T

2

, which has 8 runs, onto T

3

. We could then merge 8 runs until T

2 

was empty, 

which would leave 5 runs left on T

1 

and 8 runs on T

3

. We could then merge T1 and 

T

3

, and so on. The following table below shows the number of runs on each tape 

after each pass.  

     Run     After    After   After    After    After    After    After 

    Const.  T
3

 + T
2  

T
1

 + T
2  

T
1

 + T
3  

T
2

 + T
3  

T
1

 + T
2  

T
1

 + T
3  

T
2

 + T
3

 

-------------------------------------------------------------------------

 

T

1    

0       13        5        0       3        1        0        1

 

T

2   

21        8        0        5       2        0        1        0

 

T

3   

13        0        8        3       0        2        1        0

 

The original distribution of runs makes a great deal of difference. For instance, if 22 runs are 

placed on T

2

, with 12 on T

3

, then after the first merge, we obtain 12 runs on T

1 

and 10 runs on 

T

2

. Afte another merge, there are 10 runs on T

1 

and 2 runs on T

3

. At this point the going gets 

slow, because we can only merge two sets of runs before T

3 

is exhausted. Then T

1 

has 8 runs and 

T

2 

has 2 runs. Again, we can only merge two sets of runs, obtaining T

1 

with 6 runs and T

3 

with 2 

runs. After three more passes, T

2 

has two runs and the other tapes are empty. We must copy one 

run to another tape, and then we can finish the merge. 

It turns out that the first distribution we gave is optimal. If the number of runs is a Fibonacci 

number F

n

, then the best way to distribute them is to split them into two Fibonacci numbers F

n-1 

and F

n-2

. Otherwise, it is necessary to pad the tape with dummy runs in order to get the number 

of runs up to a Fibonacci number. We leave the details of how to place the initial set of runs on 

the tapes as an exercise.  

We can extend this to a k-way merge, in which case we need kth order Fibonacci numbers for the 

distribution, where the kth order Fibonacci number is defined as F

(k)

(n) = F

(k)

(n - 1) + F

(k)

(n -

2) +    + F

(k)

(n - k), with the appropriate initial conditions F

(k)

(n) = 0, 0  n
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 k - 2, F

(k)

(k - 1) =1. 

 

7.11.6. Replacement Selection

 

The last item we will consider is construction of the runs. The strategy we have used so far is 

the simplest possible: We read as many records as possible and sort them, writing the result to 

some tape. This seems like the best approach possible, until one realizes that as soon as the 

first record is written to an output tape, the memory it used becomes available for another 

record. If the next record on the input tape is larger than the record we have just output, then 

it can be included in the run.  

Using this observation, we can give an algorithm for producing runs. This technique is commonly 

referred to as replacement selection. Initially, m records are read into memory and placed in a 

priority queue. We perform a delete_min, writing the smallest record to the output tape. We read 

the next record from the input tape. If it is larger than the record we have just written, we can 

add it to the priority queue. Otherwise, it cannot go into the current run. Since the priority 

queue is smaller by one element, we can store this new element in the dead space of the priority 

queue until the run is completed and use the element for the next run. Storing an element in the 

dead space is similar to what is done in heapsort. We continue doing this until the size of the 

priority queue is zero, at which point the run is over. We start a new run by building a new 

priority queue, using all the elements in the dead space. 

Figure 7.18 shows the run construction 

for the small example we have been using, with m = 3. Dead elements are indicated by an asterisk. 

In this example, replacement selection produces only three runs, compared with the five runs 

obtained by sorting. Because of this, a three-way merge finishes in one pass instead of two. If 

the input is randomly distributed, replacement selection can be shown to produce runs of average 

length 2m. For our large example, we would expect 160 runs instead of 320 runs, so a five-way 

merge would require four passes. In this case, we have not saved a pass, although we might if we 

get lucky and have 125 runs or less. Since external sorts take so long, every pass saved can make 

a significant difference in the running time.  

       3 Elements In Heap Array    Output     Next Element Read

 

        H[1]   H[2]     H[3]

 

---------------------------------------------------------------

 

Run 1    11     94       81          11             96

 

         81     94       96          81             12*

 

         94     96       12*         94             35*

 

         96     35*      12*         96             17*

 

         17*    35*      12*       End of Run.  Rebuild Heap

 

---------------------------------------------------------------

 

Run 2    12     35       17          12             99

 

         17     35       99          17             28

 

         28     99       35          28             58

 

         35     99       58          35             41

 

         41     99       58          41             75*

 

         58     99       75*         58         end of tape
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         99              75*         99 

                         75*       End of Run.  Rebuild Heap

 

---------------------------------------------------------------

 

Run 3    75                          75

 

Figure 7.18 Example of run construction

 

As we have seen, it is possible for replacement selection to do no better than the standard 

algorithm. However, the input is frequently sorted or nearly sorted to start with, in which case 

replacement selection produces only a few very long runs. This kind of input is common for 

external sorts and makes replacement selection extremely valuable.  

Summary

 

For most general internal sorting applications, either insertion sort, Shellsort, or quicksort 

will be the method of choice, and the decision of which to use will depend mostly on the size of 

the input. Figure 7.19 shows the running time obtained for each algorithm on various file sizes. 

The data was chosen to be random permutations of n integers, and the times given include only the 

actual time to sort. The code given in Figure 7.2 was used for insertion sort. Shellsort used the 

code in Section 7.4 modified to run with Sedgewick's increments. Based on literally millions of 

sorts, ranging in size from 100 to 25 million, the expected running time of Shellsort with these 

increments is conjectured to be O(n

7/6

). The heapsort routine is the same as in Section 7.5. Two 

versions of quicksort are given. The first uses a simple pivoting strategy and does not do a 

cutoff. Fortunately, the input files were random. The second uses median-of-three partitioning 

and a cutoff of ten. Further optimizations were possible. We could have coded the median-of-three 

routine in-line instead of using a function, and we could have written quicksort nonrecursively. 

There are some other optimizations to the code that are fairly tricky to implement, and of course 

we could have used an assembly language. We have made an honest attempt to code all routines 

efficiently, but of course the performance can vary somewhat from machine to machine.  

The highly optimized version of quicksort is as fast as Shellsort even for very small input 

sizes. The improved version of quicksort still has an O(n

2

) worst case (one exercise asks you to 

construct a small example), but the chances of this worst case appearing are so negligible as to 

not be a factor. If you need to sort large files, quicksort is the method of choice. But never, 

ever, take the easy way out and use the first element as pivot. It is just not safe to assume 

that the input will be random. If you do not want to worry about this, use Shellsort. Shellsort 

will give a small performance penalty but could also be acceptable, especially if simplicity is 

required. Its worst case is only O(n

4/3

); the chance of that worst case occuring is likewise 

negligible.  

Heapsort, although an O (n log n) algorithm with an apparently tight inner loop, is slower than 

Shellsort. A close examination of the algorithm reveals that in order to move data, heapsort does 

two comparisons. Carlsson has analyzed an improvement suggested by Floyd that moves data with 

essentially only one comparison, but implementing this improvement makes the code somewhat 

longer. We leave it to the reader to decide whether the extra coding effort is worth the 

increased speed (Exercise 7.39).  

         Insertion Sort  Shellsort  Heapsort    Quicksort   Quicksort(opt.)

 

    n        O(n

2

)        O(n

7/6

)    O(n log n)  O(n log n)   O(n log n)

 

---------------------------------------------------------------------------

 

     10    0.00044        0.00041     0.00057     0.00052      .00046
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    100    0.00675        0.00171     0.00420     0.00284      .00244 

   1000    0.59564        0.02927     0.05565     0.03153      .02587

 

  10000   58.864          0.42998     0.71650     0.36765      .31532

 

 100000      NA           5.7298      8.8591      4.2298      3.5882

 

1000000      NA          71.164     104.68       47.065      41.282

 

Figure 7.19 Comparison of different sorting algorithms (all times are in seconds)

 

Insertion sort is useful only for small files or very nearly sorted files. We have not included 

mergesort, because its performance is not as good as quicksort for main memory sorts and it is 

not any simpler to code. We have seen, however, that merging is the central idea of external 

sorts.  

Exercises

 

7.1 Sort the sequence 3, 1, 4, 1, 5, 9, 2, 6, 5 using insertion sort. 

 

7.2 What is the running time of insertion sort if all keys are equal? 

 

7.3 Suppose we exchange elements a[i] and a[i + k], which were originally out of order. Prove 

that at least 1 and at most 2k - 1 inversions are removed.  

7.4 Show the result of running Shellsort on the input 9, 8, 7, 6, 5, 4, 3, 2, 1 using the 

increments { 1, 3, 7 }.  

7.5 What is the running time of Shellsort using the two-increment sequence 1, 2 }? 

 

7.6 *a. Prove that the running time of Shellsort is (n

2) 

using increments of the form 1, c, 

c

2

, ..., c

i

 for any integer c. 

 

**b. Prove that for these increments, the average running time is (n

3/2

). 

 

*7.7 Prove that if a k-sorted file is then h-sorted, it remains k-sorted. 

 

**7.8 Prove that the running time of Shellsort, using the increment sequence suggested by 

Hibbard, is (n

3/2

) in the worst case. Hint: You can prove the bound by considering the 

special case of what Shellsort does when all elements are either 0 or 1. Set input_data[i] = 1 if 

i is expressible as a linear combination of h

t

, h

t-1

, ..., h t/2

+1

 and 0 otherwise. 

 

7.9 Determine the running time of Shellsort for 

 

a. sorted input 

 

*b. reverse-ordered input 
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7.10 Show how heapsort processes the input 142, 543, 123, 65, 453, 879, 572, 434, 111, 242, 811, 

102.  

7.11 a. What is the running time of heapsort for presorted input? 

 

**b. Is there any input for which heapsort runs in o(n log n) (in other words, are there any 

particularly good inputs for heapsort)?  

7.12 Sort 3, 1, 4, 1, 5, 9, 2, 6 using mergesort. 

 

7.13 How would you implement mergesort without using recursion? 

 

7.14 Determine the running time of mergesort for 

 

a. sorted input 

 

b. reverse-ordered input 

 

c. random input 

 

7.15 In the analysis of mergesort, constants have been disregarded. Prove that the number of 

comparisons used in the worst case by mergesort is n log n  - 2 log n  + 1. 

 

7.16 Sort 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 using quicksort with median-of-three partitioning and a 

cutoff of 3.  

7.17 Using the quicksort implementation in this chapter, determine the running time of quicksort 

for  

a. sorted input 

 

b. reverse-ordered input 

 

c. random input 

 

7.18 Repeat Exercise 7.17 when the pivot is chosen as 

 

a. the first element 

 

b. the largest of the first two nondistinct keys 

 

c. a random element 

 

*d. the average of all keys in the set 

 

7.19 a. for the quicksort implementation in this chapter, what is the running time when all keys 

are equal?  

b. Suppose we change the partitioning strategy so that neither i nor j stops when an element with 

the same key as the pivot is found. What fixes need to be made in the code to guarantee that 

quicksort works, and what is the running time, when all keys are equal?  
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c. Suppose we change the partitioning strategy so that i stops at an element with the same key as 

the pivot, but j does not stop in a similar case. What fixes need to be made in the code to 

guarantee that quicksort works, and when all keys are equal, what is the running time of 

quicksort?  

7.20 Suppose we choose the middle key as pivot. Does this make it unlikely that quicksort will 

require quadratic time?  

7.21 Construct a permutation of 20 elements that is as bad as possible for quicksort using 

median-of-three partitioning and a cutoff of 3.  

7.22 Write a program to implement the selection algorithm. 

 

7.23 Solve the following recurrence: . 

 

7.24 A sorting algorithm is stable if elements with equal keys are left in the same order as they 

occur in the input. Which of the sorting algorithms in this chapter are stable and which are not? 

Why?  

7.25 Suppose you are given a sorted list of n elements followed by â(n) randomly ordered 
elements. How would you sort the entire list if  

a. â(n) =O(1)? 

 

b. â(n) =O(log n)? 

 

 

 

*

d. How large can â(n) be for the entire list still to be sortable in O(n) time? 

 

7.26 Prove that any algorithm that finds an element x in a sorted list of n elements requires 

(log n ) comparisons. 

 

7.27 Using Stirling's formula, , give a precise estimate for log n !. 

 

7.28 *a. In how many ways can two sorted arrays of n elements be merged? 

 

*b. Give a nontrivial lower bound on the number of comparisons required to merge two sorted lists 

of n elements.  

7.29 Prove that sorting n elements with integer keys in the range 1  key  m takes O(m + 

n) time using bucket sort.  

7.30 Suppose you have an array of n elements containing only two distinct keys, true and false. 

Give an O(n) algorithm to rearrange the list so that all false elements precede the true 

elements. You may use only constant extra space.  

7.31 Suppose you have an array of n elements, containing three distinct keys, true, false, and 

maybe. Give an O(n) algorithm to rearrange the list so that all false elements precede maybe 
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elements, which in turn precede true elements. You may use only constant extra space.  

7.32 a. Prove that any comparison-based algorithm to sort 4 elements requires 5 comparisons. 

 

b. Give an algorithm to sort 4 elements in 5 comparisons. 

 

7.33 a. Prove that 7 comparisons are required to sort 5 elements using any comparison-based 

algorithm.  

*

b. Give an algorithm to sort 5 elements with 7 comparisons. 

 

7.34 Write an efficient version of Shellsort and compare performance when the following increment 

sequences are used:  

a. Shell's original sequence 

 

b. Hibbard's increments 

 

 

 

 

 

e. Sedgewick's increments. 

 

7.35 Implement an optimized version of quicksort and experiment with combinations of the 

following:  

a. Pivot: first element, middle element, random element, median of three, median of five. 

 

b. Cutoff values from 0 to 20. 

 

7.36 Write a routine that reads in two alphabetized files and merges them together, forming a 

third, alphabetized, file.  

7.37 Suppose we implement the median of three routine as follows: Find the median of a[left], a

[center], a[right], and swap it with a[right]. Proceed with the normal partitioning step starting 

i at left and j at right - 1 (instead of left + 1 and right - 2). Assume that a [0] = MIN_DATA, 

so that sentinels are present.  

a. Suppose the input is 2,3,4, ...,n -1, n, 1. What is the running time of this version of 

quicksort?  

b. Suppose the input is in reverse order. What is the running time of this version of quicksort? 

7.38 Prove that any comparison-based sorting algorithm requires (n log n) comparisons on 

average.  

7.39 Consider the following strategy for percolate_down. We have a hole at node X. The normal 

routine is to compare X's children and then move the child up to X if it is larger (in the case 

of a (max)heap) than the element we are trying to place, thereby pushing the hole down; we stop 
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when it is safe to place the new element in the hole. The alternate strategy is to move elements 

up and the hole down as far as possible, without testing whether the new cell can be inserted. 

This would place the new cell in a leaf and probably violate the heap order; to fix the heap 

order, percolate the new cell up in the normal manner. Write a routine to include this idea, and 

compare the running time with a standard implementation of heapsort.  

7.40 Propose an algorithm to sort a large file using only two tapes. 
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